Huazhong University of Science and Technology, Wuhan, China
Abstract:Professional job recommendation involves a complex bipartite matching process that must reconcile a candidate's subjective preference with an employer's objective qualification. While Large Language Models (LLMs) are well-suited for modeling the rich semantics of resumes and job descriptions, existing paradigms often collapse these two decision dimensions into a single interaction signal, yielding confounded supervision under recruitment-funnel censoring and limiting policy controllability. To address these challenges, We propose JobRec, a generative job recommendation framework for de-conflating preference and qualification via constrained dual-perspective reasoning. JobRec introduces a Unified Semantic Alignment Schema that aligns candidate and job attributes into structured semantic layers, and a Two-Stage Cooperative Training Strategy that learns decoupled experts to separately infer preference and qualification. Building on these experts, a Lagrangian-based Policy Alignment module optimizes recommendations under explicit eligibility requirements, enabling controllable trade-offs. To mitigate data scarcity, we construct a synthetic dataset refined by experts. Experiments show that JobRec consistently outperforms strong baselines and provides improved controllability for strategy-aware professional matching.
Abstract:While open sourced Vision-Language Models (VLMs) have proliferated, selecting the optimal pretrained model for a specific downstream task remains challenging. Exhaustive evaluation is often infeasible due to computational constraints and data limitations in few shot scenarios. Existing selection methods fail to fully address this: they either rely on data-intensive proxies or use symmetric textual descriptors that neglect the inherently directional and model-specific nature of transferability. To address this problem, we propose a framework that grounds model selection in the internal functional dynamics of the visual encoder. Our approach represents each task via layer wise conductance and derives a target-conditioned block importance distribution through entropy regularized alignment. Building on this, we introduce Directional Conductance Divergence (DCD), an asymmetric metric that quantifies how effectively a source task covers the target's salient functional blocks. This allows for predicting target model rankings by aggregating source task ranks without direct inference. Experimental results on 48 VLMs across 21 datasets demonstrate that our method outperforms state-of-the-art baselines, achieving a 14.7% improvement in NDCG@5 over SWAB.
Abstract:Multimodal recommendation systems typically integrates user behavior with multimodal data from items, thereby capturing more accurate user preferences. Concurrently, with the rise of large models (LMs), multimodal recommendation is increasingly leveraging their strengths in semantic understanding and contextual reasoning. However, LM representations are inherently optimized for general semantic tasks, while recommendation models rely heavily on sparse user/item unique identity (ID) features. Existing works overlook the fundamental representational divergence between large models and recommendation systems, resulting in incompatible multimodal representations and suboptimal recommendation performance. To bridge this gap, we propose RecGOAT, a novel yet simple dual semantic alignment framework for LLM-enhanced multimodal recommendation, which offers theoretically guaranteed alignment capability. RecGOAT first employs graph attention networks to enrich collaborative semantics by modeling item-item, user-item, and user-user relationships, leveraging user/item LM representations and interaction history. Furthermore, we design a dual-granularity progressive multimodality-ID alignment framework, which achieves instance-level and distribution-level semantic alignment via cross-modal contrastive learning (CMCL) and optimal adaptive transport (OAT), respectively. Theoretically, we demonstrate that the unified representations derived from our alignment framework exhibit superior semantic consistency and comprehensiveness. Extensive experiments on three public benchmarks show that our RecGOAT achieves state-of-the-art performance, empirically validating our theoretical insights. Additionally, the deployment on a large-scale online advertising platform confirms the model's effectiveness and scalability in industrial recommendation scenarios. Code available at https://github.com/6lyc/RecGOAT-LLM4Rec.
Abstract:Multimodal recommendation aims to enhance user preference modeling by leveraging rich item content such as images and text. Yet dominant systems fuse modalities in the spatial domain, obscuring the frequency structure of signals and amplifying misalignment and redundancy. We adopt a spectral information-theoretic view and show that, under an orthogonal transform that approximately block-diagonalizes bandwise covariances, the Gaussian Information Bottleneck objective decouples across frequency bands, providing a principled basis for separate-then-fuse paradigm. Building on this foundation, we propose FITMM, a Frequency-aware Information-Theoretic framework for multimodal recommendation. FITMM constructs graph-enhanced item representations, performs modality-wise spectral decomposition to obtain orthogonal bands, and forms lightweight within-band multimodal components. A residual, task-adaptive gate aggregates bands into the final representation. To control redundancy and improve generalization, we regularize training with a frequency-domain IB term that allocates capacity across bands (Wiener-like shrinkage with shut-off of weak bands). We further introduce a cross-modal spectral consistency loss that aligns modalities within each band. The model is jointly optimized with the standard recommendation loss. Extensive experiments on three real-world datasets demonstrate that FITMM consistently and significantly outperforms advanced baselines.
Abstract:The inference overhead induced by redundant reasoning undermines the interactive experience and severely bottlenecks the deployment of Large Reasoning Models. Existing reinforcement learning (RL)-based solutions tackle this problem by coupling a length penalty with outcome-based rewards. This simplistic reward weighting struggles to reconcile brevity with accuracy, as enforcing brevity may compromise critical reasoning logic. In this work, we address this limitation by proposing a multi-agent RL framework that selectively penalizes redundant chunks, while preserving essential reasoning logic. Our framework, Self-Compression via MARL (SCMA), instantiates redundancy detection and evaluation through two specialized agents: \textbf{a Segmentation Agent} for decomposing the reasoning process into logical chunks, and \textbf{a Scoring Agent} for quantifying the significance of each chunk. The Segmentation and Scoring agents collaboratively define an importance-weighted length penalty during training, incentivizing \textbf{a Reasoning Agent} to prioritize essential logic without introducing inference overhead during deployment. Empirical evaluations across model scales demonstrate that SCMA reduces response length by 11.1\% to 39.0\% while boosting accuracy by 4.33\% to 10.02\%. Furthermore, ablation studies and qualitative analysis validate that the synergistic optimization within the MARL framework fosters emergent behaviors, yielding more powerful LRMs compared to vanilla RL paradigms.
Abstract:Symbolic logical reasoning is a critical yet underexplored capability of large language models (LLMs), providing reliable and verifiable decision-making in high-stakes domains such as mathematical reasoning and legal judgment. In this study, we present a systematic analysis of logical reasoning under controlled increases in logical complexity, and reveal a previously unrecognized phenomenon, which we term Logical Phase Transitions: rather than degrading smoothly, logical reasoning performance remains stable within a regime but collapses abruptly beyond a critical logical depth, mirroring physical phase transitions such as water freezing beyond a critical temperature threshold. Building on this insight, we propose Neuro-Symbolic Curriculum Tuning, a principled framework that adaptively aligns natural language with logical symbols to establish a shared representation, and reshapes training dynamics around phase-transition boundaries to progressively strengthen reasoning at increasing logical depths. Experiments on five benchmarks show that our approach effectively mitigates logical reasoning collapse at high complexity, yielding average accuracy gains of +1.26 in naive prompting and +3.95 in CoT, while improving generalization to unseen logical compositions. Code and data are available at https://github.com/AI4SS/Logical-Phase-Transitions.
Abstract:Web applications (web apps) have become a key arena for large language models (LLMs) to demonstrate their code generation capabilities and commercial potential. However, building a benchmark for LLM-generated web apps remains challenging due to the need for real-world user requirements, generalizable evaluation metrics without relying on ground-truth implementations or test cases, and interpretable evaluation results. To address these challenges, we introduce WebCoderBench, the first real-world-collected, generalizable, and interpretable benchmark for web app generation. WebCoderBench comprises 1,572 real user requirements, covering diverse modalities and expression styles that reflect realistic user intentions. WebCoderBench provides 24 fine-grained evaluation metrics across 9 perspectives, combining rule-based and LLM-as-a-judge paradigm for fully automated, objective, and general evaluation. Moreover, WebCoderBench adopts human-preference-aligned weights over metrics to yield interpretable overall scores. Experiments across 12 representative LLMs and 2 LLM-based agents show that there exists no dominant model across all evaluation metrics, offering an opportunity for LLM developers to optimize their models in a targeted manner for a more powerful version.




Abstract:Constructing a multi-modal automatic classification model based on three types of renal biopsy images can assist pathologists in glomerular multi-disease identification. However, the substantial scale difference between transmission electron microscopy (TEM) image features at the nanoscale and optical microscopy (OM) or immunofluorescence microscopy (IM) images at the microscale poses a challenge for existing multi-modal and multi-scale models in achieving effective feature fusion and improving classification accuracy. To address this issue, we propose a cross-modal ultra-scale learning network (CMUS-Net) for the auxiliary diagnosis of multiple glomerular diseases. CMUS-Net utilizes multiple ultrastructural information to bridge the scale difference between nanometer and micrometer images. Specifically, we introduce a sparse multi-instance learning module to aggregate features from TEM images. Furthermore, we design a cross-modal scale attention module to facilitate feature interaction, enhancing pathological semantic information. Finally, multiple loss functions are combined, allowing the model to weigh the importance among different modalities and achieve precise classification of glomerular diseases. Our method follows the conventional process of renal biopsy pathology diagnosis and, for the first time, performs automatic classification of multiple glomerular diseases including IgA nephropathy (IgAN), membranous nephropathy (MN), and lupus nephritis (LN) based on images from three modalities and two scales. On an in-house dataset, CMUS-Net achieves an ACC of 95.37+/-2.41%, an AUC of 99.05+/-0.53%, and an F1-score of 95.32+/-2.41%. Extensive experiments demonstrate that CMUS-Net outperforms other well-known multi-modal or multi-scale methods and show its generalization capability in staging MN. Code is available at https://github.com/SMU-GL-Group/MultiModal_lkx/tree/main.
Abstract:The proliferation of time series foundation models has created a landscape where no single method achieves consistent superiority, framing the central challenge not as finding the best model, but as orchestrating an optimal ensemble with interpretability. While Large Language Models (LLMs) offer powerful reasoning capabilities, their direct application to time series forecasting has proven ineffective. We address this gap by repositioning the LLM as an intelligent judge that evaluates, explains, and strategically coordinates an ensemble of foundation models. To overcome the LLM's inherent lack of domain-specific knowledge on time series, we introduce an R1-style finetuning process, guided by SHAP-based faithfulness scores, which teaches the model to interpret ensemble weights as meaningful causal statements about temporal dynamics. The trained agent then engages in iterative, multi-turn conversations to perform forward-looking assessments, provide causally-grounded explanations for its weighting decisions, and adaptively refine the optimization strategy. Validated on the GIFT-Eval benchmark on 23 datasets across 97 settings, our approach significantly outperforms leading time series foundation models on both CRPS and MASE metrics, establishing new state-of-the-art results.




Abstract:While Large Language Model (LLM) agents show great potential for automated UI navigation such as automated UI testing and AI assistants, their efficiency has been largely overlooked. Our motivating study reveals that inefficient UI representation creates a critical performance bottleneck. However, UI representation optimization, formulated as the task of automatically generating programs that transform UI representations, faces two unique challenges. First, the lack of Boolean oracles, which traditional program synthesis uses to decisively validate semantic correctness, poses a fundamental challenge to co-optimization of token efficiency and completeness. Second, the need to process large, complex UI trees as input while generating long, compositional transformation programs, making the search space vast and error-prone. Toward addressing the preceding limitations, we present UIFormer, the first automated optimization framework that synthesizes UI transformation programs by conducting constraint-based optimization with structured decomposition of the complex synthesis task. First, UIFormer restricts the program space using a domain-specific language (DSL) that captures UI-specific operations. Second, UIFormer conducts LLM-based iterative refinement with correctness and efficiency rewards, providing guidance for achieving the efficiency-completeness co-optimization. UIFormer operates as a lightweight plugin that applies transformation programs for seamless integration with existing LLM agents, requiring minimal modifications to their core logic. Evaluations across three UI navigation benchmarks spanning Android and Web platforms with five LLMs demonstrate that UIFormer achieves 48.7% to 55.8% token reduction with minimal runtime overhead while maintaining or improving agent performance. Real-world industry deployment at WeChat further validates the practical impact of UIFormer.